Dinámica de corto plazo del empleo en las maquiladoras de Reynosa, Tamaulipas

Thomas M. Fullerton, Jr.*
Juan Carlos Vázquez Morales**
Martha Patricia Barraza de Anda***

Fecha de recepción: 3 IX 2010 Fecha de aceptación: 15 II 2011

Resumen

Esta investigación analiza la dinámica de corto plazo del empleo en la industria maquiladora de exportación (IME) en Reynosa, Tamaulipas, México. El análisis se lleva a cabo con la estimación de parámetros y la metodología de funciones de transferencia lineales, ARIMA. A diferencia de otras economías metropolitanas, en las cuales se han completado estudios parecidos, el tipo de cambio real no resulta significativo. Las variables que sí resultan significativas, son las que incluyen actividad industrial en Estados Unidos, salario real y número de plantas activas. Simulaciones fuera de muestra realizadas indican que el modelo es relativamente preciso en las proyecciones de 1 a 24 meses.

Palabras Clave: maquiladoras, empleo, economía fronteriza. *Clasificación JEL*: F15, R15.

Abstract

This research analyzes short-run payroll dynamics associated with the maquiladora export sector of Reynosa, Tamaulipas, Mexico. Parameter estimation is carried out using linear transfer function ARIMA analysis. In

Correo electrónico: tomf@utep.edu

A. Baker III Institute for Public Policy de Rice University, UTEP College of Business Administration Faculty Research Grant Program, y el Consejo Nacional para Ciencia y Tecnología en México proporcionaron el apoyo financiero para este estudio. Agradecemos los comentarios y sugerencias de Alfonso Cortazar, Luis Gutiérrez y Lisbeily Domínguez.

^{*} Department of Economics & Finance, University of Texas at El Paso. Dirección: 500 West University Avenue, El Paso, TX 79968-0543.

Teléfono: 915-747-7747.

^{**} Departamento de Economía, Universidad Autónoma de Ciudad Juárez.

^{***} Departamento de Economía, Universidad Autónoma de Ciudad Juárez.
El Paso Electric Company, Hunt Communities, JPMorgan Chase Bank de El Paso, James
A. Baker III Institute for Public Policy de Rice University, UTEP College of Business

contrast to other metropolitan economies for which similar econometric analyses have been completed, real currency movements are not found to be statistically significant. Explanatory variables that do satisfy the significance criterion include industrial activity in the United States, real wages, and the number of factories in operation. Out-of-sample simulations indicate that the model is relatively accurate for forecasts of 1 to 24 months into the future.

Keywords: Maquiladoras; Employment; Border Economics. *JEL Classification*: F15, R15.

Introducción

En años recientes, se ha observado crecimiento considerable en las ciudades fronterizas del norte de México. Gran parte de esta expansión se debe a las actividades de la industria maquiladora de exportación (IME), lo cual ha generado demanda de trabajo en muchas zonas geográficas de la región. Este fenómeno se da porque la industria ofrece costos laborales atractivos y porque México cuenta con acceso a importantes mercados de insumos y de productos en los Estados Unidos. Algunos de los factores que más influyen en el establecimiento de plantas maquiladoras, muchas de las cuales son firmas americanas, han sido las ventajas comerciales, las ventajas de las políticas económicas de Estados Unidos y México, así como las ventajas de proximidad geográfica entre los dos países (Carrillo y Urquidi, 1989).

Como consecuencia de este proceso, varias economías fronterizas mexicanas han registrado crecimiento acompañado por un elevado proceso de integración a la economía mundial. Tres de estas ciudades pertenecen al estado de Tamaulipas. Las tres economías metropolitanas, Nuevo Laredo, Reynosa y Matamoros, han experimentado crecimiento industrial en tanto que son centros de actividades maquiladoras.

En Reynosa, la industria maquiladora muestra un gran impulso debido a su localización geográfica, la infraestructura física, la fuerza laboral joven y los altos índices de productividad (Broughton, 2003). Para 1996, Reynosa contaba con 90 plantas maquiladoras y más de 42 mil empleos permanentes. Hacia el final de 2006, eran más de 135 plantas, las cuales generaban cerca de 95 mil empleos. La mayoría de estas fábricas se dedican entonces al ensamble de productos electrónicos o eléctricos y de algunos productos para interiores automotrices. El promedio del salario de bajo nivel, para trabajo de ensamble en las maquiladoras de esta ciudad, era de 70 pesos por día hacia mediados de 2003 (AEEMAQ, 2003). Así como en otras ciudades de la frontera, el sector maquilador ha preferido tradicionalmente la contratación de mujeres solteras entre 18 y 25 años (Young y Fort, 1994).

El comportamiento de la demanda de trabajo del sector maquilador generalmente se ve afectado por variables económicas regionales, nacionales e internacionales. Un estudio reciente para Ciudad Juárez, Chihuahua indica que las remuneraciones reales, el número de maquiladoras en operación, el índice de producción industrial para EEUU y el tipo de cambio real influyen sobre las fluctuaciones mensuales en el empleo maquilador (Fullerton y Schauer, 2001). Resultados similares se han documentado para otras economías urbanas del país, en cuyas regiones se sitúan actividades maquiladoras. Dentro de este contexto, el objetivo de este estudio es desarrollar un modelo econométrico que posiblemente ayude a explicar la dinámica del empleo en Reynosa, Tamaulipas.

Las secciones subsecuentes de esta investigación corresponde a: 1) una revisión de la literatura; 2) la descripción de los datos y la metodología; 3) el análisis empírico econométrico y los resultados de simulación fuera de muestra y, finalmente, las conclusiones y algunas sugerencias para investigaciones futuras.

1. Revisión de la literatura

La industria maquiladora de exportación (IME) es una de las principales generadoras de empleo y divisas en México. El impulso que se le dio al programa de industrialización de la frontera inició con una serie de acuerdos entre México y Estados Unidos para atraer actividades industriales a la región fronteriza, a fin de disminuir la tasa de desempleo en el norte del país (Ayer y Layton, 1974). El programa obtuvo éxitos rápidos y, por su parte, Brook y Peach (1981) revelan tendencias de crecimiento pronunciado de empleo, que son acompañadas de marcadas expansiones de la población.

Mendoza Cota y Calderón Villarreal (2000) muestran que, entre 1980 y 1993, la tasa promedio del crecimiento anual del total del empleo manufacturero de la región fronteriza fue de 5.8%. Los estados de la frontera norte que exhibieron las tasas de crecimiento promedio anual más dinámicas fueron: Chihuahua con 10.9%, Baja California Norte con 9.2%, Tamaulipas con 8.6% y Coahuila con 5.9%. Para 1992, del total del personal ocupado en la IME, en la escala nacional, el 34.2% se concentraba en Chihuahua, el 19.2% en Baja California y el 17.8% en Tamaulipas. Estas cifras indican que más del 50% del empleo generado por la IME, se concentraba en los estados de la frontera norte.

Gruben (2001) ofrece evidencia empírica de que los incrementos del empleo en las maquiladoras, en los 6 años posteriores al TLCAN (1994-1999), resultan por bajos costos de producción y no por el acuerdo entre EEUU,

México y Canadá. Coubés (2003) también destaca la contribución de la devaluación de la moneda al final de 1994, sobre el costo efectivo del empleo para las manufacturas. Esto ocurre particularmente en los mercados de trabajo fronterizos que están integrados al sistema económico mundial, sobre todo, al norteamericano.

La integración de las ciudades fronterizas entre México y EEUU contribuye a la expansión de las actividades económicas en la región fronteriza (Hanson, 2001). La IME en México ha sido sujeto de controversias; una de ellas, es: si las maquilas toman empleos de trabajadores americanos o de trabajadores de bajos salarios de las ciudades del pacífico (Gruben, 1990). Dávila (1990) estudia el impacto de la devaluación del peso de 1982 en las ganancias de las maquiladoras, y argumenta que, el número y el nivel de operaciones de las maquiladoras que se localizan a lo largo de la frontera, depende fuertemente del retorno de las inversiones que dichas plantas producen.

Otro de los impactos del programa de maquiladoras es el que se presenta en la relocalización espacial del empleo en EEUU (Silver y Pavlakovich, 1994). El estudio indica que los desplazamientos de empleo maquilador en EEUU, tanto en los estados no fronterizos como en los fronterizos, son causados por incrementos en las actividades de la industria maquiladora. Pocos estudios están disponibles para validar la naturaleza y extensión del impacto de la influencia de las maquiladoras en las economías fronterizas. Patrick (1989) sugiere que las oportunidades para las comunidades del sur de Texas radican en la diversificación de sus economías, mediante el establecimiento de empresas proveedoras de componentes y materiales para la industria maquiladora.

Fullerton y Schauer (2001) estudian los determinantes de la dinámica del empleo maquilador, en el corto plazo, para Ciudad Juárez. Las metodologías econométricas empleadas incluyen modelos univariados y de función de transferencia ARIMA. Los resultados indican que los niveles del empleo maquilador reaccionan rápidamente con respecto a los cambios en los salarios reales y la actividad industrial. La metodología aplicada se asemeja a la que utilizan Trivez y Mur (1999) para analizar la economía regional de Aragón en España.

Coronado, Fullerton y Clark (2004), en un intento por clarificar el comportamiento del mercado laboral maquilador para la ciudad fronteriza de Tijuana, realizan la estimación de parámetros usando la técnica de Función de Transferencia Lineal (LTF). Emplean además simulaciones fuera de muestra para examinar la fiabilidad del modelo. El mismo ejercicio de simulaciones también se realiza en Fullerton y Torres Ruiz (2004), como una

medida adicional para la verificación de la confiabilidad del modelo para la ciudad no fronteriza de Chihuahua. En ambos casos, los modelos desarrollados y los pronósticos exhiben buenas características empíricas. En contraste, se observan los resultados del estudio de Cañas, Fullerton y Smith (2007) para la ciudad de Nuevo Laredo. Los resultados muestran que el pronóstico generado con el modelo LTF es menos preciso que un proceso de caminatas aleatorias. El procedimiento de simulaciones fuera de muestra también se emplea en el presente estudio, para evaluar la confiabilidad del modelo del empleo maquilador para la ciudad de Reynosa.

Actualmente, existen relativamente pocos estudios fronterizos que revelan tendencias de variables de economía regional, con respecto a variaciones en la economía de EEUU. Este tema también es de interés en el nivel macroeconómico (Garcés Díaz, 2008), pero se ha estudiado con menos frecuencia en el nivel regional. Esa brecha, en la literatura de economía aplicada, es importante ya que los estudios regionales anteriores indican que las economías metropolitanas muchas veces reaccionan de maneras distintas, ante las fluctuaciones económicas en EEUU y las variaciones en el tipo de cambio. La meta de este esfuerzo es analizar los impactos del índice de producción industrial de EEUU, salarios reales, el número de plantas maquiladoras y el tipo de cambio real en el empleo maquilador para Reynosa, Tamaulipas.

2. Datos y metodología

En general, existe información para la IME desde 1980, en especial, para ciudades fronterizas importantes como Tijuana y Cd. Juárez. Para Reynosa, es posible obtener datos desde enero de 1990 hasta diciembre de 2006. La muestra incluye 204 observaciones, lo cual ofrece suficientes grados de libertad para estimar ecuaciones y modelos de series de tiempo. Las variables que se utilizan incluyen el índice de producción industrial de EEUU, el salario real en pesos en Reynosa, el número de plantas maquiladoras en operación, el tipo de cambio real y el empleo mensual del sector maquila en la ciudad de Reynosa (Cañas, Fullerton y Smith, 2007).

El objetivo en el análisis de series de tiempo es desarrollar un modelo para expresar una relación estructurada entre algunas variables o eventos (Pankratz, 1991). El análisis de función de transferencia ofrece un medio para examinar las tendencias sistemáticas en una industria dinámica (Tiao y Box, 1981). Para estimar los parámetros, se emplea la metodología función de transferencia lineal (Liu y Hanssens, 1982). La metodología LTF es alternativa a la función de transferencia ARIMA tradicional, y ha resultado exitosa para el análisis de economías regionales (Trivez y Mur, 1999).

La estructura general de un modelo LTF puede ser expresada de la siguiente

$$Y_t = C + \sum_{i=1}^{M} \frac{w_i(B)B^{bi}}{\delta_i(B)} X_{it} + \frac{\theta(B)}{\varphi(B)\nabla d} a_t \tag{1}$$

 $\nabla^d = (1 - B)^d$ operador de diferencia

 $\varphi(B) = (1 - \varphi_1 B - \varphi_2 B^2 - \dots - \varphi_p B^p)$ operador AR $\theta(B) = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q)$ operador MA

$$\theta(B) = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q)$$
 operador MA

 a_t = error estocástico

 X_{it} = variables independientes.

Para especificar la estructura inicial de rezagos, se emplean Funciones de Correlación Cruzada (CCF):

$$c_{xy}(k) = \begin{cases} n^{-1} \sum_{t=1}^{n-k} (x_t - \overline{x})(y_{t+k} - \overline{y}) & k = 0, 1, 2, \dots \\ c_{xy}(k) = \begin{cases} n^{-1} \sum_{t=1}^{n+k} (y_t - \overline{y})(x_{t-k} - \overline{x}) & k = 0, -1, -2, \dots \end{cases}$$
(2)

 \bar{x} = es la media de la muestra de la serie x

 \overline{y} = es la media de la muestra de la serie y.

Las CCF son calculadas entre los componentes estacionarios de la variable dependiente y los componentes estacionarios de las variables independientes. Una revisión diagnóstica puede requerir varias tandas de re-estimación antes de que sea seleccionada la especificación final del modelo (Pankratz, 1991). El formato de la función implícita general, para el modelo de tendencias de corto plazo del empleo maquilador, puede ser representado de la manera

$$EMR_{t} = f(Sal\ Real_{t-i,}\ TC\ Real_{t-j,}\ Plantas_{t-k,}\ IPI\ EU_{t-m,}\ AR_{t-m}\ MA_{t-s}) \tag{3}$$

Donde:

 EMR_t = Empleo maquilador de Reynosa

 $Sal\ Real_{t-i} = Salario\ real\ de\ la\ maquiladora$

TC Real_{t-j} = Tipo de cambio real Peso/Dólar

 $Plantas_{t-k} = Plantas maquiladoras$

 $IPI EU_{t-m} =$ Índice de producción industrial de Estados Unidos

 AR_{t-n} = Componente autorregresivo

 MA_{t-s} = Componente de promedio móvil.

Los signos algebraicos bajo cada variable independiente indican la naturaleza de las relaciones hipotéticas entre los regresores y la demanda de trabajo. Los rezagos pueden variar para cada una de las variables explicativas, así como también para los parámetros autorregresivos y de promedio móvil resultantes de los residuales.

Con respecto a la incorporación del tipo de cambio real, en vez de una variable que refleja las expectativas del mercado cambiario, se mencionan los resultados de dos estudios empíricos anteriores: Fullerton y López (2005) y Fullerton, Hattori y Calderón (2001). A partir de modelos dinámicos, junto con simulaciones fuera de muestra relativas, la evidencia obtenida (de aquellos esfuerzos) indica que el tipo de cambio entre el peso y el dólar, es bastante difícil de pronosticar de manera precisa. Por lo cual, al igual que para otras variables financieras en casos similares, en los que se observan aspectos de caminatas aleatorias, se utilizan observaciones directas del tipo de cambio -en vez de expectativas- en el análisis empírico de este estudio.

Una vez que los parámetros de la ecuación son estimados, se aplica el procedimiento de simulaciones fuera de muestra para evaluar la confiabilidad del modelo resultante. La exactitud de la predicción del modelo LTF es medida en relación con el proceso de extrapolación en el proceso de caminatas aleatorias (Pindyck y Rubinfeld, 1998). Este último procedimiento emplea patrones sencillos de series de tiempo estocásticos, en el que cada cambio sucesivo en y_t es elaborado de forma independiente de una distribución de probabilidad con media cero. Así, y_t es determinado por:

$$y_{t} = y_{t-1} + e_{t} \tag{4}$$

con $E(e_t) = 0$ y $E(e_t, e_{t-s}) = 0$, cuando s es distinto de cero.

Una tanda inicial de estimaciones comprende del periodo de enero de 1990 a diciembre de 2002, con un periodo de pronóstico de enero de 2003 a diciembre de 2004. Después, el periodo de estimación es ampliado en un mes, a enero de 2003, y el periodo de pronóstico se desplaza un mes hacia delante, de febrero de 2003 hasta enero de 2005. Un total de 48 estimaciones y simulaciones son realizadas sucesivamente hasta llegar a diciembre de 2006. Una segunda tanda de estimaciones se lleva a cabo de manera similar para los pronósticos comparativos del proceso aleatorio. Para cada método de pronóstico, se generan 48 observaciones para pronósticos de un mes, 47 observaciones para pronósticos de dos meses, hasta 24 observaciones para pronósticos de 24 meses.

Los datos de los pronósticos resultantes de los ejercicios de simulación se comparan con los datos actuales del empleo maquilador para la ciudad de Reynosa. Luego, los errores de predicción se emplean para calcular los valores de los errores de simulación RMSE (raíz media de los errores cuadrados), por separado, para los 24 grupos de proyecciones. El error de simulación RMSE, es una medida de desviación de la variable simulada de su ruta de tiempo real (Pindyck y Rubinfeld, 1998). Por lo tanto, el error de simulación RMSE para la variable Y_1 se define de la manera siguiente:

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (Y_{t}^{s} - Y_{t}^{a})^{2}}$$
 (5)

Donde: Y_t^s es el valor de pronóstico para Y_t , Y_t^a es el valor actual y T es el número de valores simulados.

Los coeficientes de desigualdad de Theil también se calculan para cada conjunto de pronósticos y se expresan de la manera siguiente (Leuthold, 1975):

$$U = \frac{\sqrt{\frac{1}{T} \sum_{t=1}^{T} (Y_t^s - Y_t^a)^2}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} (Y_t^s)^2} + \sqrt{\frac{1}{T} \sum_{t=1}^{T} (Y_t^a)^2}}$$
(6)

El numerador de U es el RMSE y la escala del denominador es tal que U varía entre 0 y 1.

Los coeficientes de desigualdad de Theil también se descomponen de la manera siguiente:

$$U^{M} = \frac{(\overline{Y}^{s} - \overline{Y}^{a})^{2}}{(1/T)\sum_{t} (Y_{t}^{s} - Y_{t}^{a})^{2}}$$

$$U^{s} = \frac{(\sigma_{s} - \sigma_{a})^{2}}{(1/T)\sum (Y_{s}^{s} - Y_{t}^{a})^{2}}$$
(7)

$$U^{C} = \frac{2(1-\rho)\sigma_{s}\sigma_{a}}{(1/T)\sum(Y_{t}^{s}-Y_{t}^{a})^{2}}$$

La descomposición permite la medición de las proporciones del sesgo del pronóstico (U^m) , la varianza (U^s) y la covarianza (U^c) . La proporción del

sesgo es un indicador del error sistemático; la proporción de la varianza indica la habilidad del modelo de replicar el grado de variabilidad de la variable de interés; y la proporción de la covarianza mide el error no sistemático. Por lo tanto, para cualquier valor U>0, la distribución ideal de la designaldad sobre las tres fuentes es $U^m = U^s = 0$ y $U^c = 1$ (Pindyck y Rubinfeld, 1998).

3. Resultados empíricos

Para estimar el modelo, es necesario calcular las primeras diferencias a los logaritmos naturales de todas las series utilizadas para obtener componentes estacionarios. La tabla 1 resume la especificación seleccionada como parte del proceso de modelaje de la Función de Transferencia Lineal (LTF). El periodo contemplado es de enero de 1990 a diciembre de 2006. Los rezagos de las variables aparecen entre paréntesis.

Modelo LTF para empleo de la industria maquiladora en Reynosa, **Tamaulipas**

Variable	Coeficiente	Error Est.	Estadística t	Probabilidad
Constante	0.0051	0.0013	3.8159	0.0002
DLNWAGE(-8)	-0.0496	0.0201	-2.4632	0.0147
DLNREX	-0.0505	0.0477	-1.059	0.291
DLNMAQ(-8)	0.2639	0.0923	2.859	0.0047
DLNUSIP(-1)	0.7561	0.3098	2.4408	0.0156
AR(1)	0.3374	0.1422	2.3721	0.0187
MA(1)	-0.7015	0.1062	-6.6047	0
R-cuadrado	0.1847	Media varia	ble dependiente	0.0074
R-cuad. ajustado	0.1586	Desviación est. var. dep.		0.0314
Err. Est. regresión	0.0288	Suma de residuales cuadrados		0.1556
Crit. inf. Akaike	-4.2183	Criterio de inf. Schwarz		-4.1004
Log. verosimilitud	416.1797	Crit. inf. Ha	-4.1706	
Estadística F	7.0628	Probabilidad (Estadística F)		0
Est. Q (24 rezagos)	14.9001	Estadística Durbin-Watson		1.9896
Raíces Inv. AR	0.34	Raíces Inv (MA)	. de Prom.Móv	vil 0.7

Variable Dependiente: DLEMP

Método: Mínimos Cuadrados No Lineales Muestra (ajustada): 1990M11 2006M12

Número de observaciones: 194 (después de ajustes)

Convergencia después de 11 iteraciones Pronóstico inicial Promedio Móvil: 1990M10

Fuente: elaboración propia.

Todas las series afectan el empleo de la maquiladora de Reynosa de manera rápida, en periodos de 8 meses o menos. Los coeficientes muestran los signos algebraicos como se previó en el formato de la función general, excepto el del tipo de cambio real, el cual muestra un signo diferente a lo esperado. Debido que a fue necesario obtener las diferencias de las series antes de la estimación, el coeficiente de determinación para la variable dependiente usada es relativamente bajo (R-cuadrado = 0.185).

Tal y como se muestran los signos esperados en la función general, las variaciones en los salarios reales impactan de manera inversa a la variable del empleo. Para el caso de Reynosa, los salarios reales afectan significativamente el número de trabajos de la industria maquiladora. Se estima solo un coeficiente de salarios con rezago de 8 meses, el cual resulta similar con los dos rezagos de 7 y 8 meses que obtienen en su estudio Fullerton y Torres Ruiz (2004), para la ciudad de Chihuahua y, con el rezago de 10 meses, para el estudio de Nuevo Laredo, realizado por Cañas, Fullerton y Smith (2007).

A diferencia de las demás variables, las variaciones del tipo de cambio real se incorporan a la ecuación de Reynosa, sin afectar significativamente a la variable del empleo y con un signo diferente al esperado. En la tabla 1, se incluye contemporáneamente, similar al de un rezago obtenido en el estudio de Nuevo Laredo y distinto de los resultados que se obtienen para Ciudad Juárez, rezagos de 11 y 12 meses, para Chihuahua, donde se estiman rezagos de 6, 9 y 11 meses y para Tijuana, donde se observa una reacción en el rezago 9. Aunque la estadística *t* para este parámetro es relativamente bajo, la exclusión de esta variable perjudica el valor de la estadística *F* y del logaritmo de verosimilitud. Dado eso, se incluye en la ecuación, así como en otros modelos recientes de la actividad económica en México (Garcés Díaz, 2008).

La dinámica del empleo maquilador que se observa en las ciudades fronterizas más importantes, fue diferente a la que tomó lugar en Reynosa. En esta economía metropolitana del noroeste de Tamaulipas, se obtuvo un crecimiento sostenido del empleo durante una época de contracciones marcadas en otras ciudades. El nivel de empleo alcanzó su nivel más alto en abril del 2005, sumando 87,164 empleos en 126 maquiladoras. Esto pese a la desaceleración de la economía estadounidense que se observó a partir del primer trimestre de 2001, muy distinto a los acontecimientos en otras zonas metropolitanas del país.

Lo anterior puede obedecer a que existen algunas diferencias en la distribución de actividades de la IME entre las diferentes ciudades

fronterizas. La principal actividad de Reynosa para 1990 en términos de empleo, fue el sector de maquinaria eléctrica. El segundo plano en importancia le corresponde al sector de equipo de transporte. Para 2006, la principal actividad pasa a ser el sector de electrónicos, ligado con piezas de automóviles y, en segundo plano, el sector de equipo de transporte (INEGI, 2007).

El caso de Reynosa contrasta con el de Tijuana, el cual tiene como principal sector el electrónico, estrechamente ligado a productos para el hogar y negocios, con capital asiático. En Cd. Juárez, el principal sector en 1990 fue el de electrónicos, ligado al mercado de autopartes y como segundo en importancia, el de equipo de transporte. En 2006, el principal sector pasó a ser el de equipo de transporte y en segundo lugar, el de electrónicos. Nuevo Laredo y Chihuahua mostraron la misma dinámica que Cd. Juárez para 2006 (Cañas y Gilmer, 2009).

Para el número de plantas en operación, un parámetro se calcula para el rezago 8, parecido a los estudios para Ciudad Juárez y Tijuana, donde se estiman coeficientes en el rezago 11. Al igual que en el resultado obtenido para Chihuahua, el empleo manufacturero reacciona de manera rápida a los cambios en la producción industrial de Estados Unidos, estimando un parámetro con rezago en el periodo 1. Esta reacción rápida muestra que en la cadena de suministro de este tipo de industria se manejan inventarios moderados.

Además del tipo de cambio real, todos los parámetros son significativos. La estadística t menor de 2 para el tipo de cambio real es distinta a los resultados obtenidos para empleo en la IME, en otras ciudades. Esto es sorpresivo porque variaciones en valor internacional del peso afectan el costo de producción para empresas extranjeras. Aunque la estadística F y el logaritmo de verosimilitud indican que esto posiblemente refleja un problema de multicolinealidad, también se debe destacar que mucho del comercio de la IME se debe al comercio intra-industrial, el cual depende de varios factores que abarcan más, que el tipo de cambio real. En este contexto, México se distingue en gran medida de América Latina por su cercanía y su integración económica e industrial con EEUU (Fullerton, Sawyer y Sprinkle, 2011).

El valor del criterio Schwartz es -4.1004, lo que confirma el nivel óptimo de rezagos del modelo. El estadístico Q muestra un valor de 14.9, lo cual indica que el ajuste del modelo es bueno. De importancia igual o hasta superior, el valor del estadístico Q también sugiere que la especificación de la ecuación no pasa por alto ningún movimiento sistemático de las variables.

El paso siguiente del análisis empírico compara la precisión de las simulaciones del modelo LTF con las del proceso de caminatas aleatorias. Esto se lleva a cabo mediante el procedimiento de simulaciones fuera de muestra. La tanda inicial de estimaciones comprende del periodo de enero de 1990 a diciembre de 2002, con un periodo de pronóstico de enero de 2003 a diciembre de 2004. Después, el periodo de estimación es ampliado un mes, a enero de 2003, y el periodo de pronóstico es movido un mes hacia adelante: de febrero de 2003 hasta enero de 2005. Un total de 48 estimaciones y simulaciones se realizan sucesivamente hasta llegar a diciembre de 2006.

La tabla 2 reporta los resultados de las simulaciones fuera de muestra para la ecuación LTF. Estos muestran que existen errores sistemáticos conforme se avanza en el número de periodos pronosticados, ya que los coeficientes de desigualdad U^m y U^c se alejan de los valores ideales entre más se alarga la simulación fuera de muestra. En la tabla 3, se observa comportamiento muy similar en los pronósticos de la caminata aleatoria.

Tabla 2
Resultados de simulaciones del modelo LTF

Longitud de Pronósticos	RMSE	U-Theil	U ^m	U ^s	U ^c
Pronósticos de 1 Mes	1683.2	0.0099	0.0562	0.0051	0.9387
Pronósticos de 2 Meses	2089.5	0.0123	0.1344	0.0119	0.8537
Pronósticos de 3 Meses	2408	0.0142	0.1993	0.0115	0.7892
Pronósticos de 4 Meses	2837.6	0.0167	0.2341	0.0098	0.7562
Pronósticos de 5 Meses	3119.3	0.0183	0.3017	0.0077	0.6906
Pronósticos de 6 Meses	3374.3	0.0198	0.3583	0.0025	0.6392
Pronósticos de 7 Meses	3802.8	0.0222	0.3813	0.0014	0.6173
Pronósticos de 8 Meses	4132	0.0241	0.4286	0.0005	0.5709
Pronósticos de 9 Meses	4516.7	0.0263	0.4708	0.0005	0.5287
Pronósticos de 10 Meses	4966.1	0.0289	0.51	0.0005	0.4896
Pronósticos de 11 Meses	5327.7	0.0309	0.5681	0.0001	0.4318
Pronósticos de 12 Meses	5652.6	0.0328	0.6329	0	0.3671
Pronósticos de 13 Meses	6130.2	0.0355	0.6727	0.0007	0.3266
Pronósticos de 14 Meses	6456.3	0.0373	0.742	0.0003	0.2577
Pronósticos de 15 Meses	6868.6	0.0397	0.785	0	0.215
Pronósticos de 16 Meses	7287.4	0.042	0.8101	0	0.1899
Pronósticos de 17 Meses	7698.7	0.0444	0.8267	0.0002	0.1731
Pronósticos de 18 Meses	8077	0.0465	0.8294	0.0013	0.1693
Pronósticos de 19 Meses	8571.6	0.0493	0.8311	0.0013	0.1676
Pronósticos de 20 Meses	8963.5	0.0515	0.8424	0.0034	0.1543
Pronósticos de 21 Meses	9388.2	0.0539	0.8561	0.0093	0.1346
Pronósticos de 22 Meses	9842.6	0.0565	0.865	0.0139	0.1211
Pronósticos de 23 Meses	10273.9	0.0589	0.8957	0.0214	0.0829
Pronósticos de 24 Meses	10750.9	0.0616	0.9149	0.0242	0.0609

Fuente: elaboración propia.

Tabla 3 Resultados para pronósticos de caminata aleatoria

Longitud de Pronósticos	RMSE	U-Theil	$\mathbf{U}^{\mathbf{m}}$	U ^s	U ^c
Pronósticos de 1 Mes	1567.7	0.0093	0.1241	0.0017	0.8742
Pronósticos de 2 Meses	2060.4	0.0122	0.3262	0.0046	0.6691
Pronósticos de 3 Meses	2651.2	0.0157	0.4587	0.0027	0.5387
Pronósticos de 4 Meses	3263.6	0.0193	0.5534	0.0009	0.4457
Pronósticos de 5 Meses	3871.5	0.0229	0.6512	0.0002	0.3485
Pronósticos de 6 Meses	4381.8	0.026	0.768	0.0005	0.2315
Pronósticos de 7 Meses	5192.1	0.0308	0.7652	0.0004	0.2344
Pronósticos de 8 Meses	5861.8	0.0347	0.8065	0.0005	0.193
Pronósticos de 9 Meses	6511.5	0.0386	0.8473	0.0001	0.1526
Pronósticos de 10 Meses	7222.2	0.0428	0.8754	0	0.1246
Pronósticos de 11 Meses	7895.7	0.0468	0.9111	0	0.0889
Pronósticos de 12 Meses	8591.1	0.051	0.9434	0	0.0566
Pronósticos de 13 Meses	9380.5	0.0556	0.9369	0.0006	0.0625
Pronósticos de 14 Meses	10103.7	0.0599	0.9515	0.0009	0.0475
Pronósticos de 15 Meses	10809	0.0641	0.965	0.0008	0.0342
Pronósticos de 16 Meses	11511.1	0.0683	0.9704	0.0005	0.0291
Pronósticos de 17 Meses	12197	0.0724	0.9801	0.0002	0.0197
Pronósticos de 18 Meses	12802.9	0.076	0.9829	0	0.0171
Pronósticos de 19 Meses	13525.3	0.0803	0.9735	0.0001	0.0264
Pronósticos de 20 Meses	14133.4	0.0839	0.9761	0.0001	0.0238
Pronósticos de 21 Meses	14813.5	0.088	0.9771	0	0.0228
Pronósticos de 22 Meses	15482.6	0.092	0.9781	0	0.0219
Pronósticos de 23 Meses	16202.7	0.0964	0.9819	0	0.0181
Pronósticos de 24 Meses	16912.6	0.1006	0.9836	0	0.0164

Fuente: elaboración propia.

Los coeficientes de desigualdad de Theil modificados aparecen en la tabla 4. Estos coeficientes son calculados como el cociente de la relación RMSE(LTF)/RMSE(RW). Estos cálculos indican que, para los pronósticos de 1 y 2 meses, el pronóstico del empleo maquilador LTF es menos preciso que el pronóstico de la caminata aleatoria. Estos resultados son similares a los obtenidos por Cañas, Fullerton y Smith (2007), en el estudio para la ciudad de Nuevo Laredo. Para simulaciones de 3 a 24 meses, se observa que el pronóstico LTF es más exacto que el pronóstico de la caminata aleatoria. Estos resultados se asemejan a los que se reportan en Coronado, Fullerton y Clark (2004), para la ciudad de Tijuana, y los que aparecen en Fullerton y Torres Ruiz (2004), para la ciudad de Chihuahua. Estos resultados proporcionan evidencia de la aplicabilidad de la metodología LTF al análisis del mercado laboral, en Reynosa.

Tabla 4 Coeficientes de Desigualdad de Theil Modificados

Periodos	RMSE-LTF	RMSE-RW	U-Modificada
Pronósticos de 1 Mes	1683.2	1567.7	1.0737
Pronósticos de 2 Meses	2089.5	2060.4	1.0141
Pronósticos de 3 Meses	2408	2651.2	0.9082
Pronósticos de 4 Meses	2837.6	3263.6	0.8695
Pronósticos de 5 Meses	3119.3	3871.5	0.8057
Pronósticos de 6 Meses	3374.3	4381.8	0.7701
Pronósticos de 7 Meses	3802.8	5192.1	0.7324
Pronósticos de 8 Meses	4132	5861.8	0.7049
Pronósticos de 9 Meses	4516.7	6511.5	0.6936
Pronósticos de 10 Meses	4966.1	7222.2	0.6876
Pronósticos de 11 Meses	5327.7	7895.7	0.6748
Pronósticos de 12 Meses	5652.6	8591.1	0.658
Pronósticos de 13 Meses	6130.2	9380.5	0.6535
Pronósticos de 14 Meses	6456.3	10103.7	0.639
Pronósticos de 15 Meses	6868.6	10809	0.6355
Pronósticos de 16 Meses	7287.4	11511.1	0.6331
Pronósticos de 17 Meses	7698.7	12197	0.6312
Pronósticos de 18 Meses	8077	12802.9	0.6309
Pronósticos de 19 Meses	8571.6	13525.3	0.6337
Pronósticos de 20 Meses	8963.5	14133.4	0.6342
Pronósticos de 21 Meses	9388.2	14813.5	0.6338
Pronósticos de 22 Meses	9842.6	15482.6	0.6357
Pronósticos de 23 Meses	10273.9	16202.7	0.6341
Pronósticos de 24 Meses	10750.9	16912.6	0.6357

Fuente: elaboración propia.

Las figuras 1 y 2 ilustran los resultados que aparecen en las tablas 3 y 4. En ellas se nota la precisión relativa de las simulaciones del modelo LTF ante los pronósticos de la caminata aleatoria. Esto ofrece evidencia empírica adicional acerca de la confiabilidad del modelo LTF para el empleo de la IME, en el mercado laboral metropolitano de Reynosa.

Figura 1 Raíz media de los errores cuadrados (RMSE)

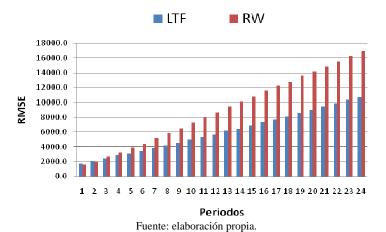
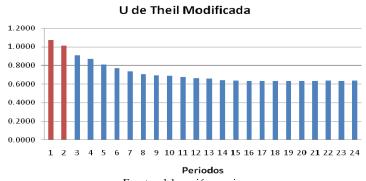



Figura 2 Coeficiente de Desigualdad de Theil Modificado

Fuente: elaboración propia.

Conclusión

La industria maquiladora de exportación ha sido fuente de inversión extranjera directa y de empleo para la frontera de México con EEUU. La magnitud de esta dinámica arroja como resultado impactos significativos en el mercado laboral de las economías metropolitanas, en las cuales operan empresas de la IME. En esta investigación, se utilizan técnicas econométricas de series de tiempo para examinar la dinámica de corto plazo

del empleo maquilador. Se emplea la metodología de Función de Transferencia Lineal (LTF) con datos de 1990 a 2006 para la ciudad de Reynosa, Tamaulipas. Se analizan los impactos del índice de producción industrial de EEUU, salario real, número de plantas maquiladoras y el tipo de cambio real sobre el volumen de empleo en las actividades de la IME en Reynosa. Ninguna de las cuatro variables independientes tiene rezagos asociados que excedan de 12 meses.

Impactos estadísticamente significativos tuvieron el número de plantas y el índice de producción industrial en el empleo maquilador. Este último demuestra un efecto rápido en comparación con todas las demás variables. En contraparte, la estructura de rezagos del salario real y el número de plantas maquiladoras resultan más largos en comparación con las otras variables explicativas.

Para Reynosa, a diferencia de otras ciudades, el tipo de cambio real no se destaca como variable significativa. El procedimiento de simulaciones fuera de muestra para la evaluación del pronostico LTF, con respecto al proceso de caminatas aleatorias, es aplicado para 24 simulaciones por separado. Los coeficientes de desigualdad de Theil modificados, indican que los pronósticos LTF resultaron más exactos, en su mayoría, con respecto a los pronósticos del proceso aleatorio.

Es importante desarrollar modelos de esta naturaleza para entender la dinámica del empleo de las ciudades fronterizas del norte de México. La particular situación en la que se encuentran geográficamente y la naturaleza de sus economías, integradas con el país vecino, permiten que se siga enriqueciendo el acervo de investigación sobre economía fronteriza, entre Estados Unidos y México. Entre las ciudades candidatas para futuros estudios están Matamoros y Mexicali.

Referencias

- AEEMAQ (Asociación de Empresas Exportadoras y Maquiladoras de Reynosa) (2003). www.maquilareynosa.com.mx
- Ayer, H. and R. Layton (1974). "The Border Industry Program and the Impact of Expenditures on a U.S. Border Community." Annals of Regional Science 8, 105-117.
- Brook, K. and J. T. Peach (1981). "Income, Employment, and Population Growth in the U.S.-México Border Counties." *Texas Business Review* 55, 136-140.
- Broughton, Ch. (2003). "Reynosa, Mexico: City of Promise and Poverty." *The Register-Mail* 4, 1-22.

- Cañas, J., T. M. Fullerton, Jr. and D. Wm. Smith (2007). "Maquiladora Employment Dynamics in Nuevo Laredo." Growth and Change 38, 23-38.
- and R. W. Gilmer (2009). "The Maquiladora's Changing Geography." Federal Reserve Bank of Dallas, Southwest Economy, Second Quarter 2009, 10-
- Carrillo-Huerta, M. and V. L. Urquidi (1989). "Trade Deriving from the International Division of Production: Maquila and Postmaquila México." Journal of the *Flagstaff Institute* 13, 14-47.
- Coronado, R., T. M. Fullerton, Jr. and D. P. Clark (2004) "Short-Run Maquiladora Employment Dynamics in Tijuana." Annals of Regional Science 38, 751-763.
- Coubés, M. L. (2003). "Evolución del Empleo Fronterizo en los Noventas." Frontera Norte 15, 33-37.
- Dávila, A. (1990). "The Impact of the 1982 Peso Devaluation on Maquiladora Profits." Journal of Borderlands Studies 5, 39-50.
- Fullerton, Jr., T. M., M. Hattori and C. Calderón (2001). "Error Correction Exchange Rate Modeling Evidence for Mexico." Journal of Economics & Finance 25, 358-
- and J. J. López (2005). "Error Correction Exchange Rate Modeling for Mexico: 1980-2001." International Journal of Applied Econometrics & Quantitative Studies 2 (3), 1-14.
- , W. Ch. Sawyer and R. L. Sprinkle (2011). "Intra-Industry Trade in Latin America and the Caribbean." International Trade Journal 25, 74-111.
- and D. A. Schauer (2001). "Short-Run Maquiladora Employment Dynamics." International Advances in Economic Research 7, 471-478.
- y L. B. Torres Ruiz (2004). "Maquiladora Employment Dynamics in Chihuahua City, México." Journal of Developing Areas 38, 1-17.
- Garcés Díaz, D. (2008). "An Empirical Analysis of the Economic Integration between Mexico and the United States and its Connection with Real Exchange Rate Fluctuations (1980-2000)." International Trade Journal 22, 484-513.
- Gruben, W. (2001). "Was NAFTA behind Mexico's high Maquiladora Growth?" Federal Reserve Bank of Dallas Economic & Financial Review, 2001 (Third Quarter), 11-21.
- Hanson, G. H. (2001). "U.S.-México Integration and Regional Economies: Evidence from Border-City Pairs." Journal of Urban Economics 50, 259-287.

- Instituto Nacional de Estadística Geografía e Informática (2007). www.inegi.gob.mx.
- Leuthold, R. M. (1975). "On the use of Theil's Inequality Coefficient." *American Journal of Agricultural Economics* 57, 344-346.
- Liu, L. M. and D. M. Hanssens (1982). "Identification of Multiple-Input Transfer-Function Models." *Communications in Statistics Part A Theory & Methods* 11, 297-314.
- Mendoza Cota, J. E. y C. Calderón Villarreal (2000). "Demanda de Trabajo de la IME en la Frontera Norte." *Frontera Norte* 12, 62-63.
- Pankratz, A. (1991). "Forecasting with Dynamic Regression Models." New York: John Wiley and Sons.
- Patrick, M. (1989). "Maquiladoras and South Texas Economic Development." Journal of Borderlands Studies 4, 89-98.
- Pindyck, R. S. and D. L. Rubinfeld (1998). Econometric Models and Economic Forecasts. New York: McGraw-Hill.
- Silver, A. and V. Pavlakovich (1994). "Maquiladora Industry Impacts on the Spatial Redistribution of Employment." *Journal of Borderlands Studies* 9, 47-64.
- Tiao, G. C. and G.E.P. Box (1981). "Modeling Multiple Times Series with Applications." *Journal of the American Statistical Association* 79, 376, 802-816.
- Trívez, J. F. and J. Mur (1999). "A Short Term Forecasting Model for Sectoral Regional Employment." *Annals of Regional Science* 33, 69-91.
- Young, G. and L. Fort (1994). "Household Responses to Economic Change: Migration and Maquiladora Work in Ciudad Juárez, México." Social Science Quarterly 75, 656-670.