Riesgo operacional en la banca trasnacional: un enfoque bayesiano

Autores/as

  • José Francisco Martínez Sánchez
  • Francisco Venegas Martínez

DOI:

https://doi.org/10.29105/ensayos32.1-2

Palabras clave:

Riesgo operacional, análisis bayesiano, simulación Monte Carlo.

Resumen

Este trabajo identifica y cuantifica a través de un modelo de red bayesiana (RB) los diversos factores de riesgo operacional (RO) asociados con las líneas de negocio de bancos trasnacionales. El modelo de RB es calibrado mediante datos de eventos que se presentaron en las distintas líneas de negocio, de dichos bancos, durante 2006-2009. A diferencia de los métodos clásicos, la calibración del modelo de RB incluye fuentes de información tanto objetivas como subjetivas, lo cual permite capturar de manera adecuada la interrelación (causa-efecto) entre los diferentes factores de riesgo, lo cual potencializa su utilidad como se muestra en el análisis comparativo que se realiza entre los enfoques RB y clásico.

Clasificación JEL: D81, C11, C15.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aquaro, V., Bardoscia, M., Belloti, R., Consiglio, A., De Carlo, F. and Ferri, G. (2009). “A Bayesian Networks Approach to Operational Risk”. Disponible en: https://www.researchgate.net/home.Home.html?ref=home

Alexander, C. (2002). “Operational Risk Measurement: Advanced Approaches”. ISMA Centre, University of Reading, UK. Disponible en: http://www.globalriskguard.com/virtual-library/operational-risk/

Altman, E. I. (1968). "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”. The Journal of Finance, 23(4), 589-609. DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1998). “Coherent Measures of Risk”. Mathematical Finance, 9(3), 203-228. DOI: https://doi.org/10.1111/1467-9965.00068

Basilea II (2001a). “Consultative document. Operational Risk”. Disponible en: http://www.bis.org/publ/bcbsca03.pdf

________ (2001b). “Working Paper on the Regulatory Treatment of Operational Risk”. Disponible en: http://www.bis.org/publ/bcbs_wp8.pdf

Basilea III (2010) "Marco internacional para la medición, normalización y seguimiento del riesgo de liquidez". Disponible en: http://www.bis.org/publ/bcbs188_es.pdf

Cowell, R. (1999). Introduction to inference for bayesian networks. En Jordan, M.I. (Ed), Learning in graphical models (9-26). Cambridge, MA, USA: MIT Press. DOI: https://doi.org/10.1007/978-94-011-5014-9_1

Degen, M., Embrechts, P. and Lambrigger, D. (2007). “The Quantitative Modeling of Operational Risk: Between g-and-h and EVT”. ASTIN Bulletin, 37(2), 265-291. DOI: https://doi.org/10.1017/S0515036100014860

Embrechts, P., Furrer, H. and Kaufmann, O. (2003). “Quantifying Regulatory Capital for Operational Risk”. Derivatives Use, Trading and Regulation, 9(3), 217-233.

Ferguson, T. S. (1973). “A Bayesian Analysis of Some Nonparametric Problems”. Annals of Statistics, 2(4), 615-629. DOI: https://doi.org/10.1214/aos/1176342360

Guo, H. and Hsu, W. (2002). “A Survey of Algorithms for Real-Time Bayesian Network Inference”. Joint Workshop on Real Time Decision Support and Diagnosis Systems, Edmonton, Alberta Canada.

Heinrich, G. (2006). “Riesgo Operacional, Sistemas de Pago y Aplicación de Basilea II en América Latina: evolución más reciente.” Boletín del CEMLA.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. First edition, Springer.

King, J. L. (2001). Operational Risk: Measurement and Modeling. West Sussex, England: John Wiley and Sons.

Kartik, A. and Reimer, K. (2007). “Phase transitions in operational risk”. PHYSICAL REVIEW E 75, 016111. DOI: https://doi.org/10.1103/PhysRevE.75.016111

Leippold, M. (2003). “The Quantification of Operational Risk”. Social Science Research Network. DOI: https://doi.org/10.2139/ssrn.481742

Marcelo, C. (2004). Operational Risk Modelling and Analysis. Risk Books.

Moscadelli, M. (2004). “The Modelling of Operational Risk: Experience with the Analysis of the Data Collected by the Basel Committee.” Italy: Bank of Italy. DOI: https://doi.org/10.2139/ssrn.557214

Neil, M., Marquez, D. and Fenton, N. (2004). “Bayesian Networks to Model Expected and Unexpected Operational Losses”. Risk analysis, 25(4). DOI: https://doi.org/10.1111/j.1539-6924.2005.00641.x

Panjer, H. (2006). Operational Risk Modeling Analytics. First edition, Wiley-Interscience. DOI: https://doi.org/10.1002/0470051310

Pearl, J. (2000). Causality, Models, Reasoning, and Inference. Cambridge University Press.

Reimer, K. and Neu, P. (2002). “Adequate Capital and Stress Testing for Operational Risks”. Physical Review E 75.

________ (2003) “Functional Correlation Approach to Operational Risk in Banking Organizations”. Physica A, 322, 650–666. DOI: https://doi.org/10.1016/S0378-4371(02)01822-8

Svetlozar T., J. Hsu, S. Biliana and F. Fabossi (2008). Bayesian Methods in Finance. The Frank J. Fabozzi Series, Wiley Finance.

Supatgiat, C., Kenyon, C. and Heusler, L. (2006). “Cause-to-Effect Operational Risk Quantification and Management”. Risk Management 8(1), 16-42. DOI: https://doi.org/10.1057/palgrave.rm.8250001

Venegas-Martínez, F. (2006). Riesgos financieros y económicos (productos derivados y decisiones económicas bajo incertidumbre). 1a. ed., México: International Thomson Editors.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: Wiley.

Descargas

Publicado

2013-05-01

Cómo citar

Martínez Sánchez, J. F., & Venegas Martínez, F. (2013). Riesgo operacional en la banca trasnacional: un enfoque bayesiano. Ensayos Revista De Economía, 32(1), 31–72. https://doi.org/10.29105/ensayos32.1-2

Número

Sección

Artículos: Convocatoria Regular

Artículos similares

1 2 3 4 5 6 7 8 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.