Financial coverage to mitigate the effects of climate change
Coberturas financieras para mitigar los efectos del cambio climático
DOI:
https://doi.org/10.29105/ensayos45.1-1Keywords:
C02, G13, Q54Abstract
Objective: in order to estimate the value of a financial option premium to hedge against the effects of climate change, particularly in light of the global rise in sea level caused by the increase in average global temperature and in the specific cases of the United States and Mexico. Method: The Heston model is considered within the financial option theory methodology, which proposes that sea level behavior is a geometric Brownian motion that is a function of the increase in average temperature, also modeled as a geometric Brownian motion with reversion to the mean. The solution is found using the Monte Carlo simulation method. Results: According to the proposed model, if the correlation between the increase in sea level and average temperature is positive, the price of coverage would be more expensive, like flood insurance. On the other hand, the slower the convergence to the long-term value of the average temperature, the more expensive the value of the coverage would be. Main findings: Under the assumptions of the Heston model, the price of flood insurance due to sea level rise caused by an increase in average temperature as a result of climate change is a function of the level of correlation between the variables, their convergence in the long term, and volatility. To consider a practical case, it would have to be calibrated and adjusted in units, and it must be taken into account that this is an incomplete market.
Downloads
References
[1] Bilal, A., & Känzig, D. R. (2024). The macroeconomic impact of climate change: Global vs. local temperature (NBER Working Paper No. 32450). National Bureau of Economic Research. https://doi.org/10.3386/w32450 DOI: https://doi.org/10.3386/w32450
[2] Blanc-Blocquel, A., Ortiz-Gracia, L., & Oviedo, R. (2024). Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation. Mathematics and Computers in Simulation, 225, 430–445. DOI: https://doi.org/10.1016/j.matcom.2024.05.024
[3] Estrada, M. (2001). Cambio climático global: causas y consecuencias. Revista de Información y Análisis, 16.
[4] Gatheral, J. (2012). The volatility surface: A practitioner’s guide. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119202073
[5] Gelrud, M. (2023). Climate change in financial markets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4479064 DOI: https://doi.org/10.2139/ssrn.4479064
[6] Griggs, G., & Reguero, B. G. (s.f.). Coastal adaptation to climate change and sea-level rise.
[7] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343. https://doi.org/10.1093/rfs/6.2.327 DOI: https://doi.org/10.1093/rfs/6.2.327
[8] Kapphan, I. (2012). Weather risk management in light of climate change using financial derivatives. https://doi.org/10.3929/ethz-a-007139821
[9] Kotz, M., Levermann, A., & Wenz, L. (2024). The economic commitment of climate change. Nature. https://doi.org/10.1038/s41586-024-07219-0 DOI: https://doi.org/10.21203/rs.3.rs-3330627/v1
[10] Kutrolli, G. (2021). Modeling and risk management with applications in financial and weather derivatives [Doctoral thesis, Universidad de Milán - Bicocca].
[11] Molina, M., Sarukhán, J., & Carabias, J. (2017). El cambio climático. Fondo de Cultura Económica.
[12] Olijslagers, S. (2022). The economics of climate change: On the role of risk and preferences [Master’s thesis, Universidad de Ámsterdam].
[13] Ortiz Niño, V. M., & Martínez, L. M. (s.f.). Finanzas verdes [Diapositivas]. Universidad Nacional Autónoma de México. https://www.paginaspersonales.unam.mx/app/webroot/files/1613/Asignaturas/2071/Archivo2.5431.pdf
[14] Petit, J. R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core in Antarctica. Nature, 399(6735), 429–436. https://www.climateark.org/vital/graphics/large/2.jpg DOI: https://doi.org/10.1038/20859
[15] Pindyck, R. S. (2020). What we know and don’t know about climate change, and implications for policy. National Bureau of Economic Research. https://doi.org/10.3386/w27304 DOI: https://doi.org/10.3386/w27304
[16] Rayén, Q. M. (2001, septiembre 1). Indicadores de sostenibilidad ambiental y de desarrollo sostenible: estado del arte y perspectivas. https://hdl.handle.net/11362/5570
[17] Rivera, J. I., Guerra, P., & Ricaurte, B. D. (2023). ¿Qué son las finanzas verdes?: Un análisis desde la teoría y la práctica. http://hdl.handle.net/10644/9583
[18] Sturm, M., Goldstein, M. A., Huntington, H., & Douglas, T. A. (2016). Using an option pricing approach to evaluate strategic decisions in a rapidly changing climate: Black–Scholes and climate change. Climatic Change, 140(3–4), 437–449. https://doi.org/10.1007/s10584-016-1860-5 DOI: https://doi.org/10.1007/s10584-016-1860-5
[19] Taxonomía sostenible de México. (2023). Gobierno de México. https://www.gob.mx/shcp/documentos/taxonomia-sostenible-de-mexico?state=published
[20] Xu, L., Deng, S., & Thomas, V. M. (2016). Carbon emission permit price volatility reduction through financial options. Energy Economics, 53, 248–260. https://doi.org/10.1016/j.eneco.2014.06.001 DOI: https://doi.org/10.1016/j.eneco.2014.06.001
[21] Xue, J., Nie, F., Zhao, L., & Xie, X. (2023). An option pricing model based on a green bond price index. University Park of Weiyang District. https://doi.org/10.2139/ssrn.4583080 DOI: https://doi.org/10.2139/ssrn.4583080
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Guillermo Sierra Juàrez

This work is licensed under a Creative Commons Attribution 4.0 International License.







