Determinantes de la corrupción en México: aplicación con enfoque bayesiano
DOI:
https://doi.org/10.29105/ensayos43.1-3Palabras clave:
corrupción, promedio de modelos bayesiano, variables instrumentales, determinantes de corrupciónResumen
El objetivo de la investigación es identificar determinantes robustos de la corrupción en México. Se plantea la metodología del Promedio de Modelos Bayesiano (BMA por sus siglas en inglés) para analizar 25 posibles determinantes de manera simultánea en una muestra que contempla las 32 entidades federativas, abarcando el período de 2015-2020. El BMA construye 33,554,432 combinaciones posibles de modelos para extraer los determinantes más robustos. Del mismo modo, se utiliza el BMA con variables instrumentales (IVBMA) para considerar los posibles problemas de endogeneidad. Los resultados indican que los factores institucionales son los mejores predictores de la corrupción, esto es, el Estado de Derecho, la democracia, la educación y la eficiencia del gobierno, muestran una asociación significativa con la corrupción.
Descargas
Citas
Accinelli, E. y Sánchez, C. E. J. (2012). “Corruption Driven by Imitative Behavior”. Economics Letters, 117(1), 84-87. DOI: https://doi.org/10.1016/j.econlet.2012.04.092
Acemoglu, D., Johnson, S., Robinson, J. A., y Yared, P. (2008). “Income and Democracy”. American Economic Review, 98(3), 808–842. DOI: https://doi.org/10.1257/aer.98.3.808
Acemoglu, D., y Verdier, T. (1998). “Property rights, Corruption and the Allocation of Talent: A General Equilibrium Approach”. The Economic Journal, 108(450), 1381–1403. DOI: https://doi.org/10.1111/1468-0297.00347
Al-Jundi, S., Shuhaiber, A., y Al-Emara, S. S. (2022). “The Effect of Political Instability and Institutional Weakness on Administrative Corruption”. Contemporary Economics, 16(2), 168-181. DOI: https://doi.org/10.5709/ce.1897-9254.475
Andersen, T. B. (2009). “E-Government as an anti-corruption strategy”. Information Economics and policy, 21(3), 201-210. DOI: https://doi.org/10.1016/j.infoecopol.2008.11.003
Angrist, J. D., y Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press. DOI: https://doi.org/10.2307/j.ctvcm4j72
Arikan, G. G. (2004). “Fiscal Decentralization: A Remedy for Corruption?”. International Tax and Public Finance, 11(2), 175–195. DOI: https://doi.org/10.1023/B:ITAX.0000011399.00053.a1
Bayale, N. (2020). Empirical Investigation into the Determinants of Public Debts in Africa: New Insights Using a Panel Bayesian Model Averaging Approach. DOI: https://doi.org/10.21203/rs.3.rs-35686/v1
Bhattacharyya, S., y Hodler, R. (2010). “Natural Resources, Democracy and Corruption”. European Economic Review, 54(4), 608–621. DOI: https://doi.org/10.1016/j.euroecorev.2009.10.004
Billger, S. M., y Goel, R. K. (2009). “Do Existing Corruption Levels Matter in Controlling Corruption: Cross-country Quantile Regression Estimates”. Journal of Development Economics, 90(2), 299–305. DOI: https://doi.org/10.1016/j.jdeveco.2008.07.006
Blazejowski, M., Kwiatkowski, J. y Gazda, J. (2019). “Sources of Economic Growth: A Global Perspective”. Sustainability, vol. 11, no. 275. DOI: https://doi.org/10.3390/su11010275
Blazejowski, M., Kwiatkowski, J., Gazda J. (2016). “Bayesian Model Averaging in the Studies on Economic Growth in the EU Regions – Application of the Gretl BMA Package”. Economics and Sociology, Vol. 9, No. 4 (November), 168-175. DOI: https://doi.org/10.14254/2071-789X.2016/9-4/10
Braun, M., y Di Tella, R. (2004). “Inflation, Inflation Variability, and Corruption”. Economics & Politics, 16(1), 77-100. DOI: https://doi.org/10.1111/j.1468-0343.2004.00132.x
Brock, W. A., y Durlauf, S. N. (2001). “What Have We Learned from a Decade of Empirical Research on Growth? Growth Empirics and Reality”. The World Bank Economic Review, 15(2), 229–272. DOI: https://doi.org/10.1093/wber/15.2.229
Brunetti, A., y Weder, B. (2003). “A Free Press is Bad News for Corruption”. Journal of Public Economics, 87(7), 1801–1824. DOI: https://doi.org/10.1016/S0047-2727(01)00186-4
Calera, N. M. L. (1997). Corrupción, ética y democracia. La corrupción política (pp. 117-135). Alianza.
Casar, M. (2016). México: anatomía de la corrupción. México: CIDE/IMCO.
Castañeda, R. V. M. (2016). “Una investigación sobre la corrupción pública y sus determinantes”. Revista mexicana de ciencias políticas y sociales, 61(227), 103-135. DOI: https://doi.org/10.1016/S0185-1918(16)30023-X
Cervellati, M., Jung, F., Sunde, U., y Vischer, T. (2014). “Income and Democracy: Comment”. American Economic Review, 104(2), 707–719. DOI: https://doi.org/10.1257/aer.104.2.707
Consejo Nacional de Evaluación de la Política de Desarrollo Social (2020). Banco de indicadores de pobreza por entidad federativa.
D’Agostino, G., Dunne, J. P., y Pieroni, L. (2016). “Corruption and Growth in Africa”. European Journal of Political Economy, 43, 71–88. DOI: https://doi.org/10.1016/j.ejpoleco.2016.03.002
D'Andrea, S. (2022). “Are There Any Robust Determinants of Growth in Europe? A Bayesian Model Averaging Approach”. International Economics, 171, 143-173. DOI: https://doi.org/10.1016/j.inteco.2022.06.001
De Viteri, V. A. S., y Bjornskov, C. (2020). Constitutional power concentration and corruption: evidence from Latin America and the Caribbean. Constitutional Political Economy, 31(4), 509-536. DOI: https://doi.org/10.1007/s10602-020-09317-3
Dreher, A., Kotsogiannis, C., y McCorriston, S. (2009). “How do Institutions Affect
Corruption and the Shadow Economy?”. International Tax and Public Finance, 16 (6), 773–796.
Durlauf, S. N., Kourtellos, A., y Tan, C. M. (2012). “Is God in the Details? A Reexamination of the Role of Religion in Economic Growth”. Journal of Applied Econometrics, 27(7), 1059–1075. DOI: https://doi.org/10.1002/jae.1245
ENCIG. (2021). Encuesta Nacional de Calidad e Impacto Gubernamental. México, Instituto Nacional de Estadística y Geografía.
Eicher, T. S., Henn, C., y Papageorgiou, C. (2012). “Trade Creation and Diversion Revisited: Accounting for Model Uncertainty and Natural Trading Partner Effects”. Journal of Applied Econometrics, 27(2), 296–321. DOI: https://doi.org/10.1002/jae.1198
Elbahnasawy, N. G., y Revier, C. F. (2012). “The Determinants of Corruption: Cross‐country Panel Data Analysis”. The Developing Economies, 50(4), 311-333. DOI: https://doi.org/10.1111/j.1746-1049.2012.00177.x
Estrada, R. J. L. (2013). “La corrupción administrativa en México”. Polis, 9(2), 179-184.
Fan, C. S., Lin, C., y Treisman, D. (2009). “Political Decentralization and Corruption: Evidence from Around the World”. Journal of Public Economics, 93(1), 14–34. DOI: https://doi.org/10.1016/j.jpubeco.2008.09.001
Fernandez, C., Ley, E., y Steel, M. F. (2001). “Benchmark Priors for Bayesian Model Averaging”. Journal of Econometrics, 100(2), 381–427. DOI: https://doi.org/10.1016/S0304-4076(00)00076-2
Fisman, R., y Gatti, R. (2002). “Decentralization and Corruption: Evidence Across Countries”. Journal of Public Economics, 83(3), 325–345. DOI: https://doi.org/10.1016/S0047-2727(00)00158-4
Freille, S., Haque, M. E., y Kneller, R. (2007). “A Contribution to the Empirics of Press Freedom and Corruption”. European Journal of Political Economy, 23(4), 838–862. DOI: https://doi.org/10.1016/j.ejpoleco.2007.03.002
Fundación Konrad Adenauer (2020). “Índice de desarrollo democrático de México IDD-Mex 2020”. México: Fundación Konrad Adenauer.
Gatti, R. (2004). “Explaining corruption: Are open countries less corrupt?”. Journal of International Development, 16(6), 851–861. DOI: https://doi.org/10.1002/jid.1115
Glaeser, E. L., y Saks, R. E. (2006). “Corruption in America”. Journal of Public Economics, 90(6), 1053–1072. DOI: https://doi.org/10.1016/j.jpubeco.2005.08.007
Gnimassoun, B., y Massil, J. K. (2019). “Determinants of corruption: Can We Put All Countries in the Same Basket?”. The European Journal of Comparative Economics, 16, 239-276.
Gnimassoun, B. (2015). “The Importance of the Exchange Rate Regime in Limiting Current Account Imbalances in Sub-Saharan African Countries”. Journal of International Money and Finance, 53, 36-74. DOI: https://doi.org/10.1016/j.jimonfin.2014.12.012
Grove, W. A., Hussey, A., y Jetter, M. (2011). “The Gender Pay Gap Beyond Human Capital: Heterogeneity in Noncognitive Skills and in Labor Market Tastes”. Journal of Human Resources, 46(4), 827–874. DOI: https://doi.org/10.1353/jhr.2011.0003
Gründler, K., y Potrafke, N. (2019). “Corruption and Economic Growth: New Empirical Evidence”. European Journal of Political Economy, 60, 101810. DOI: https://doi.org/10.1016/j.ejpoleco.2019.08.001
Hoeting, J. A., Madigan, D. y Raftery, A. E. (1997). “Bayesian Model Averaging for Linear Regression Models”. Journal of the American Statistical Association, 92(437), 179-191. DOI: https://doi.org/10.1080/01621459.1997.10473615
Hoeting, J. A., Madigan, D., Raftery, A. E., y Volinsky, C. T. (1999). “Bayesian Model Averaging: A Tutorial”. Statistical Science, 14(2), 382-401. DOI: https://doi.org/10.1214/ss/1009212519
Instituto Mexicano para la Competitividad. (2020). Índice de competitividad Estatal.
Instituto Nacional de Estadistica y Geografia (2020). Banco de información económica.
Iwasaki, I., y Suzuki, T. (2012). “The Determinants of Corruption in Transition Economies”. Economics Letters, 114(1), 54–60. DOI: https://doi.org/10.1016/j.econlet.2011.08.016
Jetter, M., y Parmeter, C. F. (2015). “Trade Openness and Bigger Governments: The Role of Country Size Revisited”. European Journal of Political Economy, 37, 49–63. DOI: https://doi.org/10.1016/j.ejpoleco.2014.11.001
Jetter, M., y Parmeter, C. F. (2018). “Sorting Through Global Corruption Determinants: Institutions and Education Matter–Not Culture”. World Development, 109, 279-294. DOI: https://doi.org/10.1016/j.worlddev.2018.05.013
Jetter, M., Montoya Agudelo, A., y Ramírez Hassan, A. (2015). “The Effect of Democracy on Corruption: Income is Key”. World Development, 74, 286–304. DOI: https://doi.org/10.1016/j.worlddev.2015.05.016
Khan, S. (2022). “Investigating the Effect of Income Inequality on Corruption: New Evidence From 23 Emerging Countries”. Journal of the Knowledge Economy, 13(3), 2100-2126. DOI: https://doi.org/10.1007/s13132-021-00761-6
Karl, A. y Lenkoski, A. (2012), “Instrumental Variable Bayesian Model Averaging Via Conditional Bayes factors”, arXiv preprint arXiv:1202.5846.
Knutsen, C. H., Kotsadam, A., Olsen, E. H., y Wig, T. (2017). “Mining and Local Corruption in Africa”. American Journal of Political Science, 61(2), 320–334. DOI: https://doi.org/10.1111/ajps.12268
Kolstad, I., y Wiig, A. (2016). “Does Democracy Reduce Corruption?”. Democratization,23(7), 1198–1215. DOI: https://doi.org/10.1080/13510347.2015.1071797
Koop, G. (2003). Bayesian Econometrics. John Wiley & Sons Ltd. Chichester,UK.
Koop, G., Leon-Gonzalez, R., y Strachan, R. (2012). “Bayesian Model Averaging in the Instrumental Variable Regression Model”. Journal of Econometrics, 171(2), 237–250. DOI: https://doi.org/10.1016/j.jeconom.2012.06.005
Lapalombara, J., (1994). “Structural and Institutional Aspects of Corruption”. Social Research, LXI, 325-350.
La Porta, R., Lopez-de Silanes, F., Shleifer, A., y Vishny, R. (1999). “The Quality of Government”. Journal of Law, Economics, and Organization, 15(1), 222–279. DOI: https://doi.org/10.1093/jleo/15.1.222
Lederman, D., Loayza, N. y Reis Soares, R., (2001). Accountability and Corruption: Political Institutions Matter. (Vol. 2708). World Bank Publications. DOI: https://doi.org/10.1596/1813-9450-2708
Lenkoski, A., Karl, A., y Neudecker, A. (2014). ivbma: Bayesian instrumental variable estimation and model determination via conditional bayes factors. R package version, 1, 05. URL https://CRAN.R-project.org/package=ivbma.
Ley, E. y Steel, M.F.J. (2009). “On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression”. Journal of Applied Economics, 24, 651–674. DOI: https://doi.org/10.1002/jae.1057
López, J. A. P., y Santos, J. M. S. (2009). “La dotación de capital social como factor determinante de la corrupción”. Revista de Economía Mundial, (22), 197-219.
Madigan, D., York, J. y Allard, D. (1995). “Bayesian Graphical Models for Discrete Data”. International Statistical Review, 63, 215–232. DOI: https://doi.org/10.2307/1403615
Maltritz, D. (2012). “Determinants of Sovereign Yield Spreads in the Eurozone: A Bayesian Approach”. Journal of International Money and Finance, 31(3), 657-672. DOI: https://doi.org/10.1016/j.jimonfin.2011.10.010
Marvasti, M. B. (2020). “Investigating the Determinants of Financial Development in OPEC Countries: An Application of Bayesian Model Averaging Approach”. International Journal of Energy Economics and Policy, 10 (1), 342 -352. DOI: https://doi.org/10.32479/ijeep.8498
Mejía, A. M. D. R. (2020). Reflexiones sobre la educación en México y su crisis para educar en el civismo. OPENAIRE.
Melgar, N., Rossi, M., y Smith, T. W. (2010). “The Perception of Corruption in a Cross-country Perspective: Why are Some Individuals more Perceptive than Others?”. Economía Aplicada, 14(2), 183-198. DOI: https://doi.org/10.1590/S1413-80502010000200004
Meza, O., y Pérez, C. E. (2021). “Corruption consolidation in local governments: A grounded analytical framework”. Public Administration, 99(3), 530-546. DOI: https://doi.org/10.1111/padm.12698
Mirestean, A., y Tsangarides, C. G. (2016). “Growth Determinants Revisited Using Limited Information Bayesian Model Averaging”. Journal of Applied Econometrics, 31(1), 106–132. DOI: https://doi.org/10.1002/jae.2472
Mo, P. (2001). “Corruption and Economic Growth”. Journal of comparative economics, 29(1), 66-79. DOI: https://doi.org/10.1006/jcec.2000.1703
Mocan, N. (2008). “What Determines Corruption? International Evidence from Microdata”. Economic Inquiry, 46(4), 493–510. DOI: https://doi.org/10.1111/j.1465-7295.2007.00107.x
Moral, B. E. (2012). “Determinants of Economic Growth: A Bayesian Panel Data Approach”. Review of Economics and Statistics, 94(2), 566-579. DOI: https://doi.org/10.1162/REST_a_00154
Mungiu P., A., y Fazekas, M. (2020). “How to Define and Measure Corruption”. In A Research Agenda for Studies of Corruption (pp. 7-26). Edward Elgar Publishing. DOI: https://doi.org/10.4337/9781789905007.00008
Nagou, M., Bayale, N., y Kouassi, B. K. (2021). “On the Robust Drivers of Public Debt in Africa: Fresh Evidence from Bayesian Model Averaging Approach”. Cogent Economics & Finance, 9(1), 1860282. DOI: https://doi.org/10.1080/23322039.2020.1860282
O’Brien, R. M. (2007). “A Caution Regarding Rules of Thumb for Variance Inflation Factors”. Quality & quantity, 41, 673-690. DOI: https://doi.org/10.1007/s11135-006-9018-6
Pellegrini, L. y Gerlagh, R. (2004). Corruption's effect on growth and its transmission channels. Kyklos, 57(3), 429-456. DOI: https://doi.org/10.1111/j.0023-5962.2004.00261.x
Persson, T., Tabellini, G., y Trebbi, F. (2003). “Electoral Rules and Corruption”. Journal of the European Economic Association, 1(4), 958-989. DOI: https://doi.org/10.1162/154247603322493203
Ríos, V., y Wood, W. D. (Eds.). (2018). The Missing Reform: Strengthening the Rule of Law in Mexico. Woodrow Wilson International Center for Scholars.
Rock, M. T., y Bonnett, H. (2004). “The Comparative Politics of Corruption: Accounting for the East Asian Paradox in Empirical Studies of Corruption, Growth and Investment”. World Development, 32(6), 999-1017. DOI: https://doi.org/10.1016/j.worlddev.2003.12.002
Rowland, M. (1998). Visión contemporánea de la corrupción. La hora de la transparencia en América Latina. El manual de anticorrupción de la función pública, Buenos Aires: Granica/Ciedla, 31-42.
Saha, S., Beladi, H., y Kar, S. (2021). “Corruption Control, Shadow Economy and Income Inequality: Evidence From Asia”. Economic Systems, 45(2), 100774. DOI: https://doi.org/10.1016/j.ecosys.2020.100774
Seldadyo, H., y De Haan, J. (2006). “The determinants of corruption: A literature survey and new evidence”. In EPCS Conference, Turku, Finland (pp. 20-23).
Schularick, M., y Steger, T. M. (2010). “Financial Integration, Investment, and Economic Growth: Evidence from Two Eras of Financial Globalization”. The Review of Economics and Statistics, 92(4), 756–768. DOI: https://doi.org/10.1162/REST_a_00027
Sheryazdanova, G., Nurtazina, R., Byulegenova, B., & Rystina, I. (2020). “Correlation between E-Government and corruption risks in Kazakhstan”. Utopía y Praxis Latinoamericana, 25(7), 41-48.
Stanig, P. (2015). “Regulation of Speech and Media Coverage of Corruption: An Empirical Analysis of the Mexican Press”. American Journal of Political Science, 59 (1), 175–193. DOI: https://doi.org/10.1111/ajps.12110
Trabelsi, M. A., y Trabelsi, H. (2021). “At What Level of Corruption does Economic Growth Decrease?”. Journal of Financial Crime, 28(4), 1317-1324. DOI: https://doi.org/10.1108/JFC-12-2019-0171
Transparency International (2022). Corruption perceptions index 2022. Transparency.org. Recuperado de: https://www.transparency.org/news/feature/corruption_perceptions_index_2022
Treisman, D. (2000). “The Causes of Corruption: A Cross-National Study”. Journal of Public Economics, 76(3), 399–457. DOI: https://doi.org/10.1016/S0047-2727(99)00092-4
Ulman, S. R. (2013). “Corruption and national competitiveness in different stages of country development”. Procedia Economics and Finance, 6, 150-160. DOI: https://doi.org/10.1016/S2212-5671(13)00127-5
Zellner, A. (1986). On Assessing Prior Distributions and Bayesian Regression Analysis with g-Prior Distributions, in: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti; Goel, P., Zellner, A., (eds.), Elsevier: Amsterdam, The Netherlands.
Zeugner, S., & Feldkircher, M. (2015). “Bayesian model averaging employing fixed and flexible priors: The BMS package for R”. Journal of Statistical Software, 68, 1-37. DOI: https://doi.org/10.18637/jss.v068.i04
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Héctor Flores Márquez, Adrián Jiménez Gómez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.