Determinantes de la corrupción en México: aplicación con enfoque bayesiano

Autores/as

DOI:

https://doi.org/10.29105/ensayos43.1-3

Palabras clave:

corrupción, promedio de modelos bayesiano, variables instrumentales, determinantes de corrupción

Resumen

El objetivo de la investigación es identificar determinantes robustos de la corrupción en México. Se plantea la metodología del Promedio de Modelos Bayesiano (BMA por sus siglas en inglés) para analizar 25 posibles determinantes de manera simultánea en una muestra que contempla las 32 entidades federativas, abarcando el período de 2015-2020. El BMA construye 33,554,432 combinaciones posibles de modelos para extraer los determinantes más robustos. Del mismo modo, se utiliza el BMA con variables instrumentales (IVBMA) para considerar los posibles problemas de endogeneidad. Los resultados indican que los factores institucionales son los mejores predictores de la corrupción, esto es, el Estado de Derecho, la democracia, la educación y la eficiencia del gobierno, muestran una asociación significativa con la corrupción.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Héctor Flores Márquez, Benemérita Universidad Autónoma de Puebla

Héctor Flores Márquez, tiene los grados de Maestro en Economía por la Benemérita Universidad Autónoma de Puebla, y Doctor en Ciencias Económicas por el Instituto Politécnico Nacional. Actualmente es Posdoctorante de la Facultad de Economía de la Benemérita Universidad Autónoma de Puebla. Es miembro del Sistema Nacional de Investigadoras e Investigadores Nivel I.

Adrián Jiménez Gómez, Benemérita Universidad Autónoma de Puebla

Adrián Jiménez Gómez tiene los grados de Maestro en Economía por El Colegio de México, Master in Arts y PhD in Economics por la Universidad de Warwick. Actualmente es profesor- investigador de la Facultad de Economía de la Benemérita Universidad Autónoma de Puebla. Es miembro del Sistema Nacional de Investigadoras e Investigadores Nivel Candidato. Ha publicado artículos sobre estimaciones econométricas sobre la demanda de trabajo. El más reciente es “An Estimation of Jobs Lost in Mexico during 2020 as a Result of the COVID-19: a Cointegration Approach”, publicado en el Brazilian Journal of Health Review en 2020. 

Citas

Accinelli, E. y Sánchez, C. E. J. (2012). “Corruption Driven by Imitative Behavior”. Economics Letters, 117(1), 84-87. DOI: https://doi.org/10.1016/j.econlet.2012.04.092

Acemoglu, D., Johnson, S., Robinson, J. A., y Yared, P. (2008). “Income and Democracy”. American Economic Review, 98(3), 808–842. DOI: https://doi.org/10.1257/aer.98.3.808

Acemoglu, D., y Verdier, T. (1998). “Property rights, Corruption and the Allocation of Talent: A General Equilibrium Approach”. The Economic Journal, 108(450), 1381–1403. DOI: https://doi.org/10.1111/1468-0297.00347

Al-Jundi, S., Shuhaiber, A., y Al-Emara, S. S. (2022). “The Effect of Political Instability and Institutional Weakness on Administrative Corruption”. Contemporary Economics, 16(2), 168-181. DOI: https://doi.org/10.5709/ce.1897-9254.475

Andersen, T. B. (2009). “E-Government as an anti-corruption strategy”. Information Economics and policy, 21(3), 201-210. DOI: https://doi.org/10.1016/j.infoecopol.2008.11.003

Angrist, J. D., y Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press. DOI: https://doi.org/10.2307/j.ctvcm4j72

Arikan, G. G. (2004). “Fiscal Decentralization: A Remedy for Corruption?”. International Tax and Public Finance, 11(2), 175–195. DOI: https://doi.org/10.1023/B:ITAX.0000011399.00053.a1

Bayale, N. (2020). Empirical Investigation into the Determinants of Public Debts in Africa: New Insights Using a Panel Bayesian Model Averaging Approach. DOI: https://doi.org/10.21203/rs.3.rs-35686/v1

Bhattacharyya, S., y Hodler, R. (2010). “Natural Resources, Democracy and Corruption”. European Economic Review, 54(4), 608–621. DOI: https://doi.org/10.1016/j.euroecorev.2009.10.004

Billger, S. M., y Goel, R. K. (2009). “Do Existing Corruption Levels Matter in Controlling Corruption: Cross-country Quantile Regression Estimates”. Journal of Development Economics, 90(2), 299–305. DOI: https://doi.org/10.1016/j.jdeveco.2008.07.006

Blazejowski, M., Kwiatkowski, J. y Gazda, J. (2019). “Sources of Economic Growth: A Global Perspective”. Sustainability, vol. 11, no. 275. DOI: https://doi.org/10.3390/su11010275

Blazejowski, M., Kwiatkowski, J., Gazda J. (2016). “Bayesian Model Averaging in the Studies on Economic Growth in the EU Regions – Application of the Gretl BMA Package”. Economics and Sociology, Vol. 9, No. 4 (November), 168-175. DOI: https://doi.org/10.14254/2071-789X.2016/9-4/10

Braun, M., y Di Tella, R. (2004). “Inflation, Inflation Variability, and Corruption”. Economics & Politics, 16(1), 77-100. DOI: https://doi.org/10.1111/j.1468-0343.2004.00132.x

Brock, W. A., y Durlauf, S. N. (2001). “What Have We Learned from a Decade of Empirical Research on Growth? Growth Empirics and Reality”. The World Bank Economic Review, 15(2), 229–272. DOI: https://doi.org/10.1093/wber/15.2.229

Brunetti, A., y Weder, B. (2003). “A Free Press is Bad News for Corruption”. Journal of Public Economics, 87(7), 1801–1824. DOI: https://doi.org/10.1016/S0047-2727(01)00186-4

Calera, N. M. L. (1997). Corrupción, ética y democracia. La corrupción política (pp. 117-135). Alianza.

Casar, M. (2016). México: anatomía de la corrupción. México: CIDE/IMCO.

Castañeda, R. V. M. (2016). “Una investigación sobre la corrupción pública y sus determinantes”. Revista mexicana de ciencias políticas y sociales, 61(227), 103-135. DOI: https://doi.org/10.1016/S0185-1918(16)30023-X

Cervellati, M., Jung, F., Sunde, U., y Vischer, T. (2014). “Income and Democracy: Comment”. American Economic Review, 104(2), 707–719. DOI: https://doi.org/10.1257/aer.104.2.707

Consejo Nacional de Evaluación de la Política de Desarrollo Social (2020). Banco de indicadores de pobreza por entidad federativa.

D’Agostino, G., Dunne, J. P., y Pieroni, L. (2016). “Corruption and Growth in Africa”. European Journal of Political Economy, 43, 71–88. DOI: https://doi.org/10.1016/j.ejpoleco.2016.03.002

D'Andrea, S. (2022). “Are There Any Robust Determinants of Growth in Europe? A Bayesian Model Averaging Approach”. International Economics, 171, 143-173. DOI: https://doi.org/10.1016/j.inteco.2022.06.001

De Viteri, V. A. S., y Bjornskov, C. (2020). Constitutional power concentration and corruption: evidence from Latin America and the Caribbean. Constitutional Political Economy, 31(4), 509-536. DOI: https://doi.org/10.1007/s10602-020-09317-3

Dreher, A., Kotsogiannis, C., y McCorriston, S. (2009). “How do Institutions Affect

Corruption and the Shadow Economy?”. International Tax and Public Finance, 16 (6), 773–796.

Durlauf, S. N., Kourtellos, A., y Tan, C. M. (2012). “Is God in the Details? A Reexamination of the Role of Religion in Economic Growth”. Journal of Applied Econometrics, 27(7), 1059–1075. DOI: https://doi.org/10.1002/jae.1245

ENCIG. (2021). Encuesta Nacional de Calidad e Impacto Gubernamental. México, Instituto Nacional de Estadística y Geografía.

Eicher, T. S., Henn, C., y Papageorgiou, C. (2012). “Trade Creation and Diversion Revisited: Accounting for Model Uncertainty and Natural Trading Partner Effects”. Journal of Applied Econometrics, 27(2), 296–321. DOI: https://doi.org/10.1002/jae.1198

Elbahnasawy, N. G., y Revier, C. F. (2012). “The Determinants of Corruption: Cross‐country Panel Data Analysis”. The Developing Economies, 50(4), 311-333. DOI: https://doi.org/10.1111/j.1746-1049.2012.00177.x

Estrada, R. J. L. (2013). “La corrupción administrativa en México”. Polis, 9(2), 179-184.

Fan, C. S., Lin, C., y Treisman, D. (2009). “Political Decentralization and Corruption: Evidence from Around the World”. Journal of Public Economics, 93(1), 14–34. DOI: https://doi.org/10.1016/j.jpubeco.2008.09.001

Fernandez, C., Ley, E., y Steel, M. F. (2001). “Benchmark Priors for Bayesian Model Averaging”. Journal of Econometrics, 100(2), 381–427. DOI: https://doi.org/10.1016/S0304-4076(00)00076-2

Fisman, R., y Gatti, R. (2002). “Decentralization and Corruption: Evidence Across Countries”. Journal of Public Economics, 83(3), 325–345. DOI: https://doi.org/10.1016/S0047-2727(00)00158-4

Freille, S., Haque, M. E., y Kneller, R. (2007). “A Contribution to the Empirics of Press Freedom and Corruption”. European Journal of Political Economy, 23(4), 838–862. DOI: https://doi.org/10.1016/j.ejpoleco.2007.03.002

Fundación Konrad Adenauer (2020). “Índice de desarrollo democrático de México IDD-Mex 2020”. México: Fundación Konrad Adenauer.

Gatti, R. (2004). “Explaining corruption: Are open countries less corrupt?”. Journal of International Development, 16(6), 851–861. DOI: https://doi.org/10.1002/jid.1115

Glaeser, E. L., y Saks, R. E. (2006). “Corruption in America”. Journal of Public Economics, 90(6), 1053–1072. DOI: https://doi.org/10.1016/j.jpubeco.2005.08.007

Gnimassoun, B., y Massil, J. K. (2019). “Determinants of corruption: Can We Put All Countries in the Same Basket?”. The European Journal of Comparative Economics, 16, 239-276.

Gnimassoun, B. (2015). “The Importance of the Exchange Rate Regime in Limiting Current Account Imbalances in Sub-Saharan African Countries”. Journal of International Money and Finance, 53, 36-74. DOI: https://doi.org/10.1016/j.jimonfin.2014.12.012

Grove, W. A., Hussey, A., y Jetter, M. (2011). “The Gender Pay Gap Beyond Human Capital: Heterogeneity in Noncognitive Skills and in Labor Market Tastes”. Journal of Human Resources, 46(4), 827–874. DOI: https://doi.org/10.1353/jhr.2011.0003

Gründler, K., y Potrafke, N. (2019). “Corruption and Economic Growth: New Empirical Evidence”. European Journal of Political Economy, 60, 101810. DOI: https://doi.org/10.1016/j.ejpoleco.2019.08.001

Hoeting, J. A., Madigan, D. y Raftery, A. E. (1997). “Bayesian Model Averaging for Linear Regression Models”. Journal of the American Statistical Association, 92(437), 179-191. DOI: https://doi.org/10.1080/01621459.1997.10473615

Hoeting, J. A., Madigan, D., Raftery, A. E., y Volinsky, C. T. (1999). “Bayesian Model Averaging: A Tutorial”. Statistical Science, 14(2), 382-401. DOI: https://doi.org/10.1214/ss/1009212519

Instituto Mexicano para la Competitividad. (2020). Índice de competitividad Estatal.

Instituto Nacional de Estadistica y Geografia (2020). Banco de información económica.

Iwasaki, I., y Suzuki, T. (2012). “The Determinants of Corruption in Transition Economies”. Economics Letters, 114(1), 54–60. DOI: https://doi.org/10.1016/j.econlet.2011.08.016

Jetter, M., y Parmeter, C. F. (2015). “Trade Openness and Bigger Governments: The Role of Country Size Revisited”. European Journal of Political Economy, 37, 49–63. DOI: https://doi.org/10.1016/j.ejpoleco.2014.11.001

Jetter, M., y Parmeter, C. F. (2018). “Sorting Through Global Corruption Determinants: Institutions and Education Matter–Not Culture”. World Development, 109, 279-294. DOI: https://doi.org/10.1016/j.worlddev.2018.05.013

Jetter, M., Montoya Agudelo, A., y Ramírez Hassan, A. (2015). “The Effect of Democracy on Corruption: Income is Key”. World Development, 74, 286–304. DOI: https://doi.org/10.1016/j.worlddev.2015.05.016

Khan, S. (2022). “Investigating the Effect of Income Inequality on Corruption: New Evidence From 23 Emerging Countries”. Journal of the Knowledge Economy, 13(3), 2100-2126. DOI: https://doi.org/10.1007/s13132-021-00761-6

Karl, A. y Lenkoski, A. (2012), “Instrumental Variable Bayesian Model Averaging Via Conditional Bayes factors”, arXiv preprint arXiv:1202.5846.

Knutsen, C. H., Kotsadam, A., Olsen, E. H., y Wig, T. (2017). “Mining and Local Corruption in Africa”. American Journal of Political Science, 61(2), 320–334. DOI: https://doi.org/10.1111/ajps.12268

Kolstad, I., y Wiig, A. (2016). “Does Democracy Reduce Corruption?”. Democratization,23(7), 1198–1215. DOI: https://doi.org/10.1080/13510347.2015.1071797

Koop, G. (2003). Bayesian Econometrics. John Wiley & Sons Ltd. Chichester,UK.

Koop, G., Leon-Gonzalez, R., y Strachan, R. (2012). “Bayesian Model Averaging in the Instrumental Variable Regression Model”. Journal of Econometrics, 171(2), 237–250. DOI: https://doi.org/10.1016/j.jeconom.2012.06.005

Lapalombara, J., (1994). “Structural and Institutional Aspects of Corruption”. Social Research, LXI, 325-350.

La Porta, R., Lopez-de Silanes, F., Shleifer, A., y Vishny, R. (1999). “The Quality of Government”. Journal of Law, Economics, and Organization, 15(1), 222–279. DOI: https://doi.org/10.1093/jleo/15.1.222

Lederman, D., Loayza, N. y Reis Soares, R., (2001). Accountability and Corruption: Political Institutions Matter. (Vol. 2708). World Bank Publications. DOI: https://doi.org/10.1596/1813-9450-2708

Lenkoski, A., Karl, A., y Neudecker, A. (2014). ivbma: Bayesian instrumental variable estimation and model determination via conditional bayes factors. R package version, 1, 05. URL https://CRAN.R-project.org/package=ivbma.

Ley, E. y Steel, M.F.J. (2009). “On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression”. Journal of Applied Economics, 24, 651–674. DOI: https://doi.org/10.1002/jae.1057

López, J. A. P., y Santos, J. M. S. (2009). “La dotación de capital social como factor determinante de la corrupción”. Revista de Economía Mundial, (22), 197-219.

Madigan, D., York, J. y Allard, D. (1995). “Bayesian Graphical Models for Discrete Data”. International Statistical Review, 63, 215–232. DOI: https://doi.org/10.2307/1403615

Maltritz, D. (2012). “Determinants of Sovereign Yield Spreads in the Eurozone: A Bayesian Approach”. Journal of International Money and Finance, 31(3), 657-672. DOI: https://doi.org/10.1016/j.jimonfin.2011.10.010

Marvasti, M. B. (2020). “Investigating the Determinants of Financial Development in OPEC Countries: An Application of Bayesian Model Averaging Approach”. International Journal of Energy Economics and Policy, 10 (1), 342 -352. DOI: https://doi.org/10.32479/ijeep.8498

Mejía, A. M. D. R. (2020). Reflexiones sobre la educación en México y su crisis para educar en el civismo. OPENAIRE.

Melgar, N., Rossi, M., y Smith, T. W. (2010). “The Perception of Corruption in a Cross-country Perspective: Why are Some Individuals more Perceptive than Others?”. Economía Aplicada, 14(2), 183-198. DOI: https://doi.org/10.1590/S1413-80502010000200004

Meza, O., y Pérez, C. E. (2021). “Corruption consolidation in local governments: A grounded analytical framework”. Public Administration, 99(3), 530-546. DOI: https://doi.org/10.1111/padm.12698

Mirestean, A., y Tsangarides, C. G. (2016). “Growth Determinants Revisited Using Limited Information Bayesian Model Averaging”. Journal of Applied Econometrics, 31(1), 106–132. DOI: https://doi.org/10.1002/jae.2472

Mo, P. (2001). “Corruption and Economic Growth”. Journal of comparative economics, 29(1), 66-79. DOI: https://doi.org/10.1006/jcec.2000.1703

Mocan, N. (2008). “What Determines Corruption? International Evidence from Microdata”. Economic Inquiry, 46(4), 493–510. DOI: https://doi.org/10.1111/j.1465-7295.2007.00107.x

Moral, B. E. (2012). “Determinants of Economic Growth: A Bayesian Panel Data Approach”. Review of Economics and Statistics, 94(2), 566-579. DOI: https://doi.org/10.1162/REST_a_00154

Mungiu P., A., y Fazekas, M. (2020). “How to Define and Measure Corruption”. In A Research Agenda for Studies of Corruption (pp. 7-26). Edward Elgar Publishing. DOI: https://doi.org/10.4337/9781789905007.00008

Nagou, M., Bayale, N., y Kouassi, B. K. (2021). “On the Robust Drivers of Public Debt in Africa: Fresh Evidence from Bayesian Model Averaging Approach”. Cogent Economics & Finance, 9(1), 1860282. DOI: https://doi.org/10.1080/23322039.2020.1860282

O’Brien, R. M. (2007). “A Caution Regarding Rules of Thumb for Variance Inflation Factors”. Quality & quantity, 41, 673-690. DOI: https://doi.org/10.1007/s11135-006-9018-6

Pellegrini, L. y Gerlagh, R. (2004). Corruption's effect on growth and its transmission channels. Kyklos, 57(3), 429-456. DOI: https://doi.org/10.1111/j.0023-5962.2004.00261.x

Persson, T., Tabellini, G., y Trebbi, F. (2003). “Electoral Rules and Corruption”. Journal of the European Economic Association, 1(4), 958-989. DOI: https://doi.org/10.1162/154247603322493203

Ríos, V., y Wood, W. D. (Eds.). (2018). The Missing Reform: Strengthening the Rule of Law in Mexico. Woodrow Wilson International Center for Scholars.

Rock, M. T., y Bonnett, H. (2004). “The Comparative Politics of Corruption: Accounting for the East Asian Paradox in Empirical Studies of Corruption, Growth and Investment”. World Development, 32(6), 999-1017. DOI: https://doi.org/10.1016/j.worlddev.2003.12.002

Rowland, M. (1998). Visión contemporánea de la corrupción. La hora de la transparencia en América Latina. El manual de anticorrupción de la función pública, Buenos Aires: Granica/Ciedla, 31-42.

Saha, S., Beladi, H., y Kar, S. (2021). “Corruption Control, Shadow Economy and Income Inequality: Evidence From Asia”. Economic Systems, 45(2), 100774. DOI: https://doi.org/10.1016/j.ecosys.2020.100774

Seldadyo, H., y De Haan, J. (2006). “The determinants of corruption: A literature survey and new evidence”. In EPCS Conference, Turku, Finland (pp. 20-23).

Schularick, M., y Steger, T. M. (2010). “Financial Integration, Investment, and Economic Growth: Evidence from Two Eras of Financial Globalization”. The Review of Economics and Statistics, 92(4), 756–768. DOI: https://doi.org/10.1162/REST_a_00027

Sheryazdanova, G., Nurtazina, R., Byulegenova, B., & Rystina, I. (2020). “Correlation between E-Government and corruption risks in Kazakhstan”. Utopía y Praxis Latinoamericana, 25(7), 41-48.

Stanig, P. (2015). “Regulation of Speech and Media Coverage of Corruption: An Empirical Analysis of the Mexican Press”. American Journal of Political Science, 59 (1), 175–193. DOI: https://doi.org/10.1111/ajps.12110

Trabelsi, M. A., y Trabelsi, H. (2021). “At What Level of Corruption does Economic Growth Decrease?”. Journal of Financial Crime, 28(4), 1317-1324. DOI: https://doi.org/10.1108/JFC-12-2019-0171

Transparency International (2022). Corruption perceptions index 2022. Transparency.org. Recuperado de: https://www.transparency.org/news/feature/corruption_perceptions_index_2022

Treisman, D. (2000). “The Causes of Corruption: A Cross-National Study”. Journal of Public Economics, 76(3), 399–457. DOI: https://doi.org/10.1016/S0047-2727(99)00092-4

Ulman, S. R. (2013). “Corruption and national competitiveness in different stages of country development”. Procedia Economics and Finance, 6, 150-160. DOI: https://doi.org/10.1016/S2212-5671(13)00127-5

Zellner, A. (1986). On Assessing Prior Distributions and Bayesian Regression Analysis with g-Prior Distributions, in: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti; Goel, P., Zellner, A., (eds.), Elsevier: Amsterdam, The Netherlands.

Zeugner, S., & Feldkircher, M. (2015). “Bayesian model averaging employing fixed and flexible priors: The BMS package for R”. Journal of Statistical Software, 68, 1-37. DOI: https://doi.org/10.18637/jss.v068.i04

Publicado

2024-01-30

Cómo citar

Flores Márquez, H., & Jiménez Gómez, A. (2024). Determinantes de la corrupción en México: aplicación con enfoque bayesiano. Ensayos Revista De Economía, 43(1), 51–82. https://doi.org/10.29105/ensayos43.1-3

Número

Sección

Artículos: Convocatoria Regular

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.